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ABSTRACT 
 

The local buckling capacity of fire exposed thin-walled steel cross sections is affected by the reduction in 

strength and stiffness due to elevated temperatures and the amplitude of the initial local imperfections. 

Several researchers have proposed design methods to calculate the capacity of the plates (i.e. web and 

flanges) that compose these steel members at elevated temperatures, but they used different shapes of 

steel plates (sides ratio a/b) and different amplitudes of local imperfections. This variability in hypotheses 

happens because there is no clear provision defining the numerical modeling procedure for fire design of 

steel plates in the codes (European or US). According to the theory of perfect plates, the critical load 

depends of the shape of the rectangular plate (e.g. the sides ratio a/b) and the corresponding buckling 

mode (number of half waves), the boundary and the loading conditions. This paper reviews the existing 

code provisions and compares the existing design models and their assumptions for thin-walled steel 

cross sections. Elements of the theory of perfect plates are presented. Parametric finite element analyses 

are then conducted on isolated steel plates at elevated temperatures to investigate the effect of the plate 

shape (a/b ratio) and imperfections (amplitude and number of half wave lengths). From the analysis, the 

governing parameter will be estimated (a/b vs imperfections) for simulation of isolated flanges and webs. 

Finally, recommendations for the numerical modeling of steel plates at elevated temperatures are 

proposed. 

 

1. INTRODUCTION 

 

The use of slender steel sections, i.e. sections 

made of thin steel plates, has increased in recent 

years because they provide excellent strength to 

weight ratio; this trend has also been favoured by 

the development of higher steel grades. Yet, a 

major issue with slender sections is local buckling 

that may occur in zones subjected to compression: 

in the flange under compression for elements in 

bending and in the web for elements in 

compression. In very deep sections, shear can also 

trigger local buckling in the web if it is too slender. 

Furthermore, past fire accidents have 

demonstrated local buckling failures in structural 

members with slender cross sections, like in WTC 

5 [1] and Broadgate fire [2]. 

To take local instabilities into account, several 

design methods have been proposed by 

researchers based on finite element analyses of 

isolated plates [3], [4], [5], [6] or analytical 

methods [7]. As the current codes do not include a 

specific method for the calculation of the capacity 

of such structural members at elevated 

temperatures, the ambient temperature methods of 

EN 1993-1-5, 2006 [8] and AISC, 2005 [9] can be 

used in conjunction with elevated temperature 

material models from EN 1993-1-2, 2005 [10] or 

AISC, 2005 [9] respectively. A comparison of the 

plate capacity predicted by different proposed 

models, whether based on design codes or 

numerical analyses, is showed in Figure 1. The 

horizontal axis on the plot is the elevated 

temperature plate slenderness (Eq. 5) and the 

vertical axis is the strength reduction due to local 

buckling. Although these models give similar 

trends, the discrepancy in quantitative results is 

significant with a ratio in the order of 2 between 

the extremes. Table 1 shows the governing 

parameters (i.e. assumptions) used in the models 

based on numerical analyses. The parameters a, b 

and t are the length, width and thickness of the 

plate, respectively. It can be seen that different 

authors assumed different values for these 

parameters, which naturally lead to different 

results. The results are affected by the amplitude 

of the initial local imperfections, by the geometry 

of the local imperfections (number of half-waves) 

and by the dimensions of the plate (ratio a/b) [11]. 

The effect of the amplitude of the initial local 

imperfections is discussed in another study [12]. 

This paper presents an investigation on the 

influence of the geometry of the local 

imperfections (number of half-waves) and the 



dimensions of the plate (ratio a/b). Considering the 

theory of perfect plates and numerical results of 

simulations on isolated plates, recommendations 

are made for the geometry of the local 

imperfections (number of half-waves) and the 

dimensions of the plate (ratio a/b) for the 

numerical modeling of steel plates at elevated 

temperatures.

 

 

 
Figure 1. Comparison of proposed design and code methods for capacity of slender plates at 500 

o
C (S235), 

(a) for stiffened plates (web) and (b) for unstiffened plates (flange). 

Table 1. Governing analysis parameters used in the numerical simulations by different authors. 

Reference a/b 
Number of 

half-waves 
Amplitude of imperfections 

Franssen et al, 2014 [5] 
flange: 2 

web: 1 

1 flange: b/50 = 0.020 b 

web: b/200 = 0.005 b 

Couto et al, 2014 [3] 4 
flange: 1,  

web: 4 

flange: 80% b/50 = 0.016 b 

web: 80% b/100 = 0.008 b 

Quiel et al, 2010 [6] 5 
flange: 3,  

web: 5 

flange: 0.156 t 

web: 0.100 t 

 

 



2. BUCKLING OF PERFECT PLATES 

 

According to the theory of buckling of plates [13] 

the plate buckling governing equation of a plate in 

in-plane compression is: 

 

                                                      (1) 

 

where D is the bending stiffness of the plate, w is 

the out-of-plane displacements, Nxy is the in-plane 

load  and w,xy is the in-plane displacement (Figure 

2). 

 
Figure 2. Typical plate under in-plane compression simply 

supported in four sides. 

 

For long rectangular plates, Equation (1) can be 

reformulated as [14]: 

 

     
   

              
                                          (2) 

 

Where σcr is the critical stress, k is the plate 

buckling coefficient, E and ν are the modulus of 

elasticity and the Poison ratio of the elastic 

material, b is the width of the plate and t is the 

plate thickness. 

The plate buckling coefficient k depends on the 

applied boundary conditions. When the plate is 

short in the direction of the compressive stress, 

there exists an influence in the critical buckling 

stress due to the fact that the buckled half-waves 

which take integer values are forced into a finite 

length plate (Figure 3). Therefore for short plates, 

the plate buckling coefficient is also a function of 

the size of the plate (ratio a/b) and the number of 

half-waves m (Figure 4). 

From Figure 4, for 4 sides simply supported plate, 

a/b=m gives safe result (i.e. minimum value of k) 

and for 3 sides simply supported plate, a/b>4 and 

m=1 is giving safe results. This preliminary 

conclusion applies to perfect plates. 

 
Figure 3. Different buckling modes (m is the number of half-

waves) for different a/b ratios of 4 sides simply supported 

plates 

 

 
Figure 4. Buckling reduction factor for plates in compression 

as function of the shape of the plate a/b, the boundary 

conditions and the number of half-waves m [13]. 

 

3. BUCKLING OF IMPERFECT 

PLATES 

 

As with all steel structures, plate panels contain 

residual stresses from manufacture and subsequent 

welding into plate assemblies, and are not 

perfectly flat (they have imperfections). The 

previous discussions (Section 2) about plate panel 

behaviour all relate to an ideal, perfect plate. As 

shown in Figure 5 these imperfections affect the 

behaviour of actual plates. For a slender plate the 

behaviour is asymptotic to that of the perfect plate 

and there is little reduction in strength (Figure 5a 

and 5c) as occurs elastic buckling and plastic 



deformations appear at post buckling stage. For 

plates of intermediate slenderness (which 

frequently occur in practice), an actual imperfect 

plate will have a considerably lower strength than 

that predicted for the perfect plate (Figure 5b and 

5c). 

 

 
 

 

 
Figure 5. Effect of imperfections on plates of different slenderness in compression [16] (a) slender plates, (b) intermediate 

slender plates and (c) relationship between plate slenderness and strength in compression. 

 

4. FINITE ELEMENT SIMULATIONS 

OF STEEL PLATES AT ELEVATED 

TEMPERATURES 

 

In order to assess the effect of different 

dimensions (a/b ratio) and imperfection shape 

(number of half waves), finite element analyses of 

isolated plates are performed using the nonlinear 

finite element software SAFIR
®

 [17-18]. The 

considered imperfection amplitude was b/200 as 

defined in [12]. The residual stresses are not 

considered as their effect is minor at elevated 

temperatures [19]. All analyses were performed at 

550 
o
C. Two numerical models were used for 

parametric analysis for different a/b and number of 

half-waves of imperfections. The first model 

(Figure 6(a)) is simply supported at all 4 sides; it 

is simulating a stiffened plate (equivalent to a 

web). With a/b=1, 400 shell elements are used 

based on convergence verification (Figure 7). For 

the parametric analysis when the ratio a/b is 

modified, the element size is kept the same so that 

the number of elements is equal to 400*(a/b). 

Imposed displacements are applied in the x 

direction at one side whereas the opposite side is 

restrained in the same direction. The lateral sides 

are free to expand in the y-direction, to allow 

unrestrained Poisson effect. The local 



imperfections are applied in m half-wave (n = 1) 

following the Eq. (3): 

             
   

 
     

   

 
                       (3) 

where wo is the local imperfection amplitude. 

The second finite element model is unstiffened 

(equivalent to a flange), simply supported on three 

sides (Figure 6(b)), with aspect ratio a/b and 

400*(a/b) shell elements used after convergence 

verification. The local imperfections are applied in 

m half-waves (n = 1) following the Eq. 4: 

             
   

 
     

   

  
                      (4) 

In order to assess plates of different slenderness, 

the thickness is modified to get different values of 

slenderness calculated according to Eq. 5 from EN 

1993-1-5 [8]: 

 

     
   

        
                                                      (5) 

 

where kσ is a factor considering the applied 

boundary conditions defined in EN 1993-1-5 [8] 

and ε has been taken for elevated temperatures 

from the equation: 

 

   
    

    
 

   

  
                                                     (6) 

 

where kΕ,θ and ky,θ are the reduction factors of 

Young’s modulus and yield strength respectively 

for temperature θ. 
The yield strength is taken as 235 MPa for both 
plates. 

As critical force, the maximum total reaction due to the 

applied displacement is considered. (13) 

 

 
Figure 6. Finite element models for (a) stiffened plate (web) 

with a/b=1 and 400 elements and (b) unstiffened plate 

(flange) with a/b=5 and 2000 elements. 

 

 
Figure 7. Convergence verification for square plate with a = 

b = 0.4 m under axial compression. 

 

5. SIMULATIONS RESULTS 

 

The results of the parametric analysis for the 

stiffened model (web) are presented in Figure 8(a). 

The convergence to the lower (safe) buckling load 

occurs for m = a/b, as expected from the theory of 

perfect plates. Yet, it is also observed that the 

buckling load remains at the minimum value for m 

= a/b + 1 (e.g. m = 3 when a/b = 2). For larger 

values of m (relative to a/b), the buckling load 

increases. The effect of a/b and m may affect the 

buckling load by up to 25%.  

Figure 8(b) shows the results obtained for two 

additional configurations: with a very small 

amplitude of imperfections (b/2000) and with 

fixed rotation along the x axis on the two lateral 

edges. These two configurations do not reach the 

minimum value of buckling load for the same 

value of m. When imperfections equal with b/2000 

are considered, the analysis is giving safe results 

only for m = a/b, as the plate converges to the 

perfect plate due to very small imperfections. 

When the side rotations are fixed, the minimum 

buckling load is for m = a/b + 1, a result expected 

from the perfect plates theory considering these 

boundary conditions (upper curves in Figure 4). 

For the studied configurations, the effect of the 



amplitude of imperfections and of the boundary 

conditions on the minimum buckling load is equal 

to 13% and 17%, respectively. The effect of 

boundary conditions is reduced (expected 70% 

from Figure 4) due to imperfections. 

 

  

 
Figure 8. Parametric analysis results for stiffened (web) plate 

(S235, 550 
o
C) (a) effect of a/b and m on the critical load 

and (b) effect of imperfection amplitude and boundary 

conditions. 

 

The analysis results for the unstiffened plate 

(flange) are presented in Figure 9. Two different 

slenderness are studied. Figure 9(a) presents the 

results for plates with λp,θ equal with 1.0 

(intermediate slenderness). It can be seen that the 

minimum buckling load is obtained for a/b > 3 and 

m = 1. When the plate is slender (λp,θ = 2.0, Figure 

9(b)), the minimum occurs for a/b > 4 and m > 3.  

For unstiffened plates, it is important to know 

whether the behaviour is the one of an 

intermediate slenderness plate (i.e. Figure 9(a)) or 

of a slender plate (Figure 9(b)). Indeed, adopting 

a/b > 3 and m=1 for a slender plate leads to an 

overestimation of 28% of the buckling load, 

compared to the minimum value (which is 

obtained for a/b > 4 and m > 3). Conversely, 

adopting a/b > 4 and m > 3 for an intermediate 

slenderness plate results in an overestimation of 

15 % of the minimum buckling load. From 

parametric analyses it is found that this change 

happens around a slenderness value of λp,θ = 1.2, 

which is compatible with Figure 5c. As the 

buckling mode is not compatible with the applied 

imperfections of a/b > 4 and m > 3, the critical 

force is higher at intermediate slenderness. But for 

λp,θ > 1.2, these imperfection shapes are giving 

minimum post-buckling response.  

 

 
Figure 9. Parametric analysis results for unstiffened (flange) 

plate (S235, 550 
o
C) (a) for λp,θ = 1.0 and (b) λp,θ = 2.0. 

 

When a/b = 1, the critical load is high as expected 

from the perfect plate theory. From Figure 9, it is 

clear that the critical load of the square plate is 

also affected by the odd or even number of half-

waves. This happens because initially applied 

imperfections following an even number of half 

waves are incompatible with the natural tendency 

of the plate to buckle in one half wave. 

It should be noted that the isolated plate analysis 

method to simulate plated structural elements 
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relies on two simplifying assumptions. First, the 

boundary conditions applied on the studied plate 

are a simplification which ignores the actual 

stiffness of the other plates of the cross section. 

Second, the temperature is considered uniform, 

which might be inaccurate in structural 

applications. Yet, this method has been largely 

used by researchers to approximate the behaviour 

of thin plate structures. Consequently, it is 

important to study the effects of the parameters 

that affect the results and provide 

recommendations as regards the values to adopt to 

ensure that the results are on the safe side.  

In terms of recommendation, a simplification for 

the isolated flange simulation could be the use of 

(a/b > 4, m > 3) for unstiffened (flange) plates and 

for all the range of slenderness. However, it must 

be kept in mind that this would result in an 

overestimation of the critical load for unstiffened 

plate of intermediate slenderness. 

Typical failure modes are presented in Figure 10. 

 

 
Figure 10. Failure modes of (a) four sides simply supported 

plate (web) with a/b=1 and m=1 and (b) three sides simply 

supported plate (flange) with a/b=5 and m=4. 

 

6. CONCLUSIONS 

 

From the presented analysis results in conjunction 

with the theoretical background presented in 

Sections 2 and 3, the following conclusions can 

been drawn: 

-The buckling behaviour of real steel plates at 

elevated temperatures is complex, influenced by 

imperfections, and cannot be predicted from 

perfect plate theory alone. 

- The finite element method can be used to 

simulate the buckling behaviour of steel plates at 

elevated temperatures. However, the results are 

strongly dependent on certain parameters (a/b, m, 

boundary conditions). Significantly unsafe results 

can be obtained from FEA for certain 

combinations of the parameters. 

- For the analysis of stiffened plates (web), the use 

of rectangular plates with sides ratio a/b and a 

number m of half-waves of imperfections equal to 

m=a/b or m=a/b+1 is giving safe results (i.e. the 

minimum buckling load). The use of a/b=m=1 is 

proposed, as it giving safe results and the 

computational time is minimum. 

- For the analysis of unstiffened plates (flange), 

the set of parameters leading to minimum buckling 

load depends on the slenderness ratio. Rectangular 

plates with sides ratio a/b > 4 should be used in 

any case, but the number of half-waves of 

imperfections leading to safe results is m=1 for λp,θ 

< 1.2 and m > 3 for λp,θ < 1.2. 

- For the analysis of unstiffened plates (flange), 

the use of rectangular plates with sides ratio a/b > 

4 and half-waves of imperfections m > 3 is 

proposed as a simplification but it is an 

unconservative assumption. 
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